EcoTest as a Basis for a Global Green Labelling – Discrepancies between manufacturer’s specifications and actual fuel efficiency

GFEI Workshop on In-use Fuel Economy

Session 1 – Current status and recent findings in measuring in-use fuel economy

16th July 2014
Dipl.-Ing. Volker Sandner, ADAC e.V.

© www.adac.de
ADAC Technik Zentrum

- ADAC is the world’s 2nd largest automobile club with more than 18.9 m members enjoying the status of a consumer protection organisation
- ADAC Technik Zentrum: Test centre of the European FIA clubs
- Emission tests, car reviews, crash tests, product tests, total cost of ownership, etc.
- What does consumer protection mean?
 - no commercial interest in products
 - neutral publication
 - focus on product improvement

The players in consumer protection:
FIA partner clubs, EU, Federal Government, ICRT

Example: European Test Consortium for Child Restraint Systems
ADAC emissions lab and low-temperature dynamometer

Emissions lab
- Temperature range: -10°C to +40°C
- max. speed 200 kph
- Simulation of uphill sections (up to 20%)
- CO, HC, CH₄, THC, NMHC, NOₓ, NO, NO₂, PM, PN, CO₂
- official type approval lab

Low-temperature dynamometer
- Temperature range: -25°C to +30°C
- Horsepower up to 2 x 260 kW (2 x 350 hp)
- max. speed up to 260 kph
- OBD data interface
- Variable wheelbase: between 2.36 and 3.36 m
Table of contents

A	What we can learn from ADAC EcoTest for the Development of a Green NCAP
B	Discrepancies between manufacturer’s specifications and actual fuel efficiency
C	Possibility to test Global NCAP or Latin NCAP cars in EcoTest or other Green NCAP
D	Green NCAP – Next steps
ADAC EcoTest

- Since 2003 comprehensive consumer information regarding the eco-friendliness of vehicles
- Assessment of fuel consumption (CO₂ emissions) and pollutant emissions
- Based on specially developed real-life driving cycles, which go beyond the mandatory type approval test cycles
- Objective: innovation, light-weight design and fuel efficiency across all vehicle classes
- Manufacturers use EcoTest as a standard and include the test label in their advertising
- Adjustment of the test and rating criteria as from April 2012:
 - Inclusion of the WLTP cycle (the coming world-wide test cycle)
 - Well-to-wheel assessment for better comparability of electric vehicles
 - Electric cars are assessed on the basis of the energy consumed (kWh) incl. self-discharge and the CO₂ emissions from power plants based on the German (D) electricity mix (Source: Federal Environment Agency, UBÄ) and renewable energies
 - Stricter CO₂ limits
 - Adjustment of pollutant assessment to Euro 6 (petrol engines)
 - Measurement and assessment of the particle number
EcoTest rating is more than CO$_2$ and fuel consumption

A car has to be:
- clean
- efficient
- tested under conditions near to reality

EcoTest rating:
- Polutant rating (absolut)
- CO$_2$ rating (well-to-wheel, class dependent scale)

Additional information: Fuel consumption
EcoTest rating – 5-star rating system

- **Small ecological footprint**
 - >90
 - 5 stars
 - 70...89
 - 4.5 stars
 - 50...69
 - 4 stars
 - 30...49
 - 3 stars

- **Large ecological footprint**
 - <30
 - 1.5 stars
EcoTest test cycles

- **NEDC cold**
 Initial assessment; testing for pollutants such as HC, CO, NOₓ, particulate matter and NEW! the particle number of diesel and direct-injection petrol engines; NEW! daytime running lights (if present) or low beams are on during test; CO₂ testing

- **WLTP**
 “World cycle” replaces NEDC hot; with air conditioning on and NEW! daytime running lights (if present) or low beams are on during test; CO₂ testing

- **ADAC Motorway test**
 With air conditioning on and NEW! and daytime running lights (if present) or low beams on during test; testing for pollutants such as HC, CO, NOₓ, particulate mass; CO₂ testing
EcoTest test cycles

- **Petrol and diesel vehicles**
 No special sequence

- **LPG/CNG vehicles**
 NEW! EcoTest is run only on LPG/CNG drive

- **Hybrids**
 Battery state of charge (SOC) 60-70 %

- **Plug-In-hybrids**
 Measurement of full battery and measurement of empty battery – standard averaging; measurement of the charge (energy input) in kWh and calculation of CO₂ emissions (1 kWh = 563 g/kWh; Source: UBA; this value is corrected as needed)

- **Electric vehicles**
 Measurement in electric vehicle cycle (all three cycles back to back) until SOC < 50 %; measurement of the charge (energy input) in kWh and calculation of CO₂ emissions (1 kWh = 563 g/kWh; Source: UBA; this value is updated as needed); power plant emissions are not relevant
ADAC EcoTest

Polutants rating – thresholds

- All types of drives or fuels are equal in ADAC EcoTest.

Unlike under current legislation
- no bonus for diesel engines applies in ADAC EcoTest
- test of aggressive driving emissions (Motorway / off-cycle)

16.07.2014 Dipl.-Ing. Volker Sandner, ADAC e.V.
ADAC EcoTest

CO₂ rating – thresholds, well-to-wheel

- CO₂ ratings are based on a system of relative class-dependent scales.

The ADAC EcoTest offers consumers useful information for comparing vehicles of the same size and vehicle class and considers the source of the fuel (well-to-wheel).
CO₂ rating – vehicle classes and sample cars

<table>
<thead>
<tr>
<th>No.</th>
<th>Vehicle class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Microcar</td>
<td>Smart</td>
</tr>
<tr>
<td>2</td>
<td>City</td>
<td>Fiat 500, Peugeot 107, VW up!</td>
</tr>
<tr>
<td>3</td>
<td>Supermini</td>
<td>Ford Fiesta, Peugeot 208, VW Polo, Audi A1</td>
</tr>
<tr>
<td>4</td>
<td>Small family</td>
<td>Mercedes A-Class, Toyota Auris, VW Golf</td>
</tr>
<tr>
<td>5</td>
<td>Family</td>
<td>3-series BMW, Mazda 6, Opel/Vauxhall Insignia, Toyota Avensis</td>
</tr>
<tr>
<td>6</td>
<td>Executive</td>
<td>Audi A6, 5-series BMW, Mercedes E-Class, Volvo V70</td>
</tr>
<tr>
<td>7</td>
<td>Luxury</td>
<td>Audi A8, 7-series BMW, Mercedes S-Class</td>
</tr>
</tbody>
</table>

A family will seek for the cleanest and most efficient car in the category Small Family, a single person in a large city will seek for the cleanest and most efficient Microcar, etc.
For Global NCAP we need to develop a conclusion for energy sources in different countries to drive clean vehicle technology (efficient, clean), as well as clean energy production and energy supply.
Well-to-Wheel (WTW) – CO$_2$ emissions in EcoTest vs. manufacturer’s specifications

The EcoTest CO$_2$ results of electric cars may considerably depart from manufacturers’ specifications due to energy generation and driving cycles.
5-stars-vehicles in EcoTest (Top 3):

- **CNG:**
 - Mercedes E 200 NGD 7G-TRONIC PLUS
 - Audi A3 Sportback g-tron S tronic
 - VW Golf 1.4 TGI BlueMotion

- **Electric:**
 - VW eGolf
 - VW e-up!
 - Tesla Modell S
 - BMW i3

- **Hybrid:**
 - Toyota Prius 1.8 Plug-In Hybrid
 - Toyota Auris 1.8 Hybrid
 - Toyota Prius 1.8 Hybrid

- **Diesel:**
 - Mercedes E 220 BlueTEC BlueEFFICIENCY Edition 7G-Tronic
 - Mercedes C220 BlueTEC
 - VW Golf 1.6 TDI BlueMotion
Table of contents

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>What we can learn from ADAC EcoTest for the Development of a Green NCAP</td>
</tr>
<tr>
<td>B</td>
<td>Discrepancies between manufacturer’s specifications and actual fuel efficiency</td>
</tr>
<tr>
<td>C</td>
<td>Possibility to test Global NCAP or Latin NCAP cars in EcoTest or other Green NCAP</td>
</tr>
<tr>
<td>D</td>
<td>Green NCAP – Next steps</td>
</tr>
</tbody>
</table>
Limits and tolerances in fuel efficiency specifications

- Discrepancies between manufacturer’s specifications and actual fuel efficiency has been a frequent reason for litigation between consumers and manufacturers.

- When it comes to fuel consumption, we must distinguish between
 - manufacturer’s specifications based a test cycle (NEDC – New European Driving Cycle) in line with EU Reg. 715/2007 (type approval)
 - the fuel consumption of a specific vehicle in real-life use in traffic
 - the fuel consumption of the specific vehicle in cause measured in a test cycle (NEDC – New European Driving Cycle) in line with EU Reg. 715/2007

- Whereas manufacturers’ fuel efficiency specifications are verified under defined conditions in a lab, the fuel consumption observed by the motorist depends on personal driving styles, the speed profile, weather conditions, vehicle payload etc.

The fuel consumption observed in real-life traffic cannot be compared with manufacturers’ fuel efficiency specifications.
Fuel consumption in EcoTest vs. manufacturer’s specifications

- Petrol n = 137
- Diesel n = 156
- Electric n = 12
- Hybrid n = 24
- LPG n = 5
- CNG n = 11

20% underconsumption
10% underconsumption
Same
10% overconsumption
20% overconsumption
30% overconsumption
Fuel consumption in EcoTest vs. manufacturer’s specifications – Classified by fuel type

- Petrol: n = 137
- Diesel: n = 156
- Hybrid: n = 24
- LPG: n = 5
- CNG: n = 11
- Electric: n = 12

Percentage divergence [%]
Fuel consumption in EcoTest vs. manufacturer’s specifications – Classified by vehicle class

- Vehicle class 1+2: n=21, percentage divergence [\%] = 18
- Vehicle class 3: n=46, percentage divergence [\%] = 16
- Vehicle class 4: n=138, percentage divergence [\%] = 14
- Vehicle class 5: n=86, percentage divergence [\%] = 12
- Vehicle class 6: n=37, percentage divergence [\%] = 14
- Vehicle class 7: n=17, percentage divergence [\%] = 10
Fuel consumption in EcoTest vs. manufacturer’s specifications – Classified by fuel type and vehicle class

- Petrol
- Diesel
- Hybrid
- LPG
- CNG
- Electric

Vehicle classes with numbers of test cars:
- Vehicle class 1+2: n=21
- Vehicle class 3: n=46
- Vehicle class 4: n=138
- Vehicle class 5: n=86
- Vehicle class 6: n=37
- Vehicle class 7: n=17

Percentage divergence [%]
Conclusion

- EcoTest measurements show an increased consumption in comparison to the manufacturer's informations
- The largest deviations are indicated for vehicles with electric and hybrid drive
- EcoTest is suitable to provide a basis for the GreenNCAP

- With the exception of EcoTest, all popular eco-friendliness car ratings are based on manufacturer’s specifications and thus do not reflect actual fuel consumption.
- EcoTest offers more realistic emission and fuel consumption data for consumers and can be used as a basis for the new Green NCAP protocol and roadmap.
Table of contents

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>What we can learn from ADAC EcoTest for the Development of a Green NCAP</td>
</tr>
<tr>
<td>B</td>
<td>Discrepancies between manufacturer’s specifications and actual fuel efficiency</td>
</tr>
<tr>
<td>C</td>
<td>Possibility to test Global NCAP or Latin NCAP cars in EcoTest or other Green NCAP</td>
</tr>
<tr>
<td>D</td>
<td>Green NCAP – Next steps</td>
</tr>
</tbody>
</table>
Global NCAP Cars, EcoTest Results in Detail

Ford Figo 1.0 Trend
Suzuki Alto 1.0 Basic
VW Polo 1.2 Trendline
Tata Nano
Hyundai i10 1.1 Classic
Global NCAP Cars, EcoTest Results in Detail

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Power [kW]</th>
<th>Engine /fuel</th>
<th>FC [l/100km]</th>
<th>CO2 EcoTest</th>
<th>Pollution Score</th>
<th>CO2 Score</th>
<th>EcoTest Score</th>
<th>EcoTest Stars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ford Figo 1.0</td>
<td>48</td>
<td>Gasoline</td>
<td>8,14</td>
<td>210,94</td>
<td>25</td>
<td>4</td>
<td>29</td>
<td>*</td>
</tr>
<tr>
<td>Trend</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyundai i10 1.1</td>
<td>51</td>
<td>Gasoline</td>
<td>6,85</td>
<td>186,00</td>
<td>43</td>
<td>10</td>
<td>53</td>
<td>***</td>
</tr>
<tr>
<td>Classic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suzuki Alto 1.0</td>
<td>50</td>
<td>Gasoline</td>
<td>5,70</td>
<td>151,69</td>
<td>31</td>
<td>21</td>
<td>52</td>
<td>***</td>
</tr>
<tr>
<td>Basic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tata Nano</td>
<td>28</td>
<td>Gasoline</td>
<td>4,30</td>
<td>120,95</td>
<td>49</td>
<td>34</td>
<td>83</td>
<td>****</td>
</tr>
<tr>
<td>VW Polo 1.2</td>
<td>51</td>
<td>Gasoline</td>
<td>7,12</td>
<td>195,78</td>
<td>43</td>
<td>11</td>
<td>54</td>
<td>***</td>
</tr>
<tr>
<td>Trendline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The best vehicle is the Tata Nano with 83 points in the EcoTest, the fuel consumption is 4.30 l/100 km or 25.32 mpg (US), resulting in CO2-emissions of 121.0 g/km (WTW).

The worst vehicle is the Ford Figo with 29 points in the EcoTest, the fuel consumption is 8.14 l/100 km or 47.93 mpg (US), resulting in CO2-emissions of 210.9 g/km (WTW).
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>What we can learn from ADAC EcoTest for the Development of a Green NCAP</td>
</tr>
<tr>
<td>B</td>
<td>Discrepancies between manufacturer’s specifications and actual fuel efficiency</td>
</tr>
<tr>
<td>C</td>
<td>Possibility to test Global NCAP or Latin NCAP cars in EcoTest or other Green NCAP</td>
</tr>
<tr>
<td>D</td>
<td>Green NCAP – Next steps</td>
</tr>
</tbody>
</table>
Green NCAP: Requirements from FIA

- Green NCAP is a common Project of the Global New Car Assessment Program (GNCAP) and the Goibal Fuel Economy Initiative (GFEI).

- **Aim:**
 - Setting a more stringent test procedure for environmental performance of cars similar to NCAPs which already do this for crash tests and successfully rate safety features of vehicles.
 - Development of a new rating system to assess and quantify environmental performance of cars based on
 - tailpipe emissions (CO_2, CO, NO$_x$, PM$_{10}$, PM$_{2.5}$ and HC in g/km or µg/km)
 - energy efficiency (in MJ/km)
 - noise (in dB).
EcoTest as a Phase-in for a Green NCAP Roadmap

<table>
<thead>
<tr>
<th></th>
<th>Cars per Year</th>
<th>Emissions</th>
<th>NEDC (cold)</th>
<th>ADAC Highway (warm)</th>
<th>WLTP (warm)</th>
<th>WLTP (cold)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EcoTest Data from ADAC</td>
<td>ADAC: 150 European cars per year</td>
<td>CO2, HC, CO, NOx, PM</td>
<td>for cross check</td>
<td>for off cycle banning</td>
<td>for real world driving</td>
<td>no</td>
</tr>
<tr>
<td>Global Green Label from GreenNCAP</td>
<td>ADAC: 150 Euro. + Latin NCAP, Global NCAP</td>
<td>CO2, HC, CO, NOx, PM</td>
<td>Phase 1</td>
<td>Phase 1</td>
<td>Phase 1</td>
<td>Phase 2</td>
</tr>
<tr>
<td>Global Green Label from GreenNCAP</td>
<td>GNCAP Labs (European, Transatlantic)</td>
<td>CO2, HC, CO, NOx, PM</td>
<td></td>
<td></td>
<td></td>
<td>Phase 3</td>
</tr>
<tr>
<td>Global Green Label from GreenNCAP</td>
<td>Further development stages like Euro NCAP</td>
<td>further Roadmap within GNCAP</td>
<td></td>
<td></td>
<td></td>
<td>+ (...)</td>
</tr>
</tbody>
</table>

Examples for GreenNCAP Label
Thank you very much for your attention!